

- **System Analysis**
- Order Reduction & Prediction
- Dynamic Mode
 Decomposition (DMD)
- 4 Summary

System Analysis

> System is dynamic spatio-temporal.

Conclusions

- > Three dimensions.
- Spatial peaks exist.
- Variation with time periods.
- Energy concentration at 80-120Hz

System Analysis

> System is predictable.

- **System Analysis**
- Order Reduction & Prediction
- Dynamic Mode
 Decomposition (DMD)
- 4 Summary

Time Series Prediction

> Two prediction strategies for high-dimensional system.

Reduce system order

Reduce the dimensions of system in space to reduce system complexity and computation.

Reduced Order Model (ROM)

> Two prediction strategies for high-dimensional system.

Data comparison of preprocessing

Pred. comparison of with/without outliers

Pred. comparison of with/without PCA

Reduced Order Model (ROM)

> Prediction using LSTM with PCA and preprocessing.

Seen in SPR-Time fig:

- LSTM has best performance among RNN and Transformer.
- All of them cannot fit well in peak region.

LSTM -With outliers - Without PCA 0.0183 0.0646 LSTM –Without outliers – Without PCA 0.9819 1.104e-5 LSTM - Without outliers - With PCA 0.8268 4.906e-5 Time: 199.27 s LSTM - Without outliers - Without PCA 0.9819 1.104e-5 Time: 11873.31 s 4.906e-5 LSTM – Without outliers – With PCA 0.8268

0.4108

0.7989

0.63143

6.750e-5

Summary:

- LSTM with PCA predicts well, has fast response and short training cost.
- PCA-based reduction loses a lot of system information.

RNN – Without outliers – With PCA

Transformer – Without outliers – With PCA

- **System Analysis**
- Order Reduction & Prediction
- Dynamic Mode
 Decomposition (DMD)
- 4 Summary

Dynamic Mode Decomposition (DMD)

➤ Prediction using DMD - Koopman.

e DMD Pred

Dynamic Mode Decomposition (DMD)

➤ Prediction using DMD - Koopman.

- Compared with PCA-LSTM, DMD can fit well both in peak region and smooth region.
- DMD has the best prediction accuracy and stability among other models in ROM.

- **System Analysis**
- Order Reduction & Prediction
- Dynamic Mode
 Decomposition (DMD)
- 4 Summary

Summary

Summary

Perform time, space, frequency and modes analysis of systems.

Based on PCA reduce the system's order and apply three main-stream models to predict system status. (PCA-LSTM best)

Apply DMD-Koopman to predict the system and compare with PCA-LSTM. (DMD-Koopman better)

20

100

120

